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ABSTRACT

In this paper, we present methods for comparing and evaluating forecasters whose predictions

are presented as their subjective probability distributions of various random variables that will

be observed in the future, eg. weather forecasters who each day must specify their own

probabilities that it will rain in a particular location. We begin by reviewing the concepts of

calibration and refinement, and describing the relationship between this notion of refinement

and the notion of sufficiency in the comparison of statistical experiments. We also consider

the question of interrelationships among forecasters and discuss methods by which an observer

should combine the predictions from two or more different forecasters. Then we turn our

attention to the concept of a proper scoring rule for evaluating forecasters, relating it to the

concepts of calibration and refinement. Finally, we discuss conditions under which one

forecaster can exploit the predictions of another forecaster to obtain a better score.
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1. INTRODUCTION

In this paper we describe some concepts and methods appropriate for evaluating and

comparing forecasters who repeatedly present their predictions of whether or not various events

will occur in terms of their subjective probabilities of those events. The ideas we describe

here are relevant in almost any situation in which forecasters must repeatedly make such

probabilistic predictions, regardless of the particular subject matter or substantive area of the

events being forecast. The forecaster might be an economist who at the beginning of each

quarterly period makes predictions about unemploymt, the rate of inflation, or Gro

National Product in that quarter based on the values of various economic indicators; the

forecaster might even make predictions using a large-scale econometric model of the United

States economy based on hundreds of variables and econometric relations.

In a different field, the forecaster might be the weatherman for a television station who at

the beginning of each day must announce his probability that it will rain during the day. For

ease of exposition, we present our discussions here in the context of such a weather forecaster

who day after day must specify his subjective probability x that there will be at least a certain

amount of rain at some given location during a specified time interval of the day. We refer

to the occurrence of this well-specified event simply as "rain." Thus, at the beginning of each

day the forecaster must specify his probability of rain and at the end of each day he observes

whether or not rain actually occurred.

The probability x specified by the forecaster on any particular day is called his prediction

for that day. We shall make the realistic, and simultaneously simplfying, asumption that the

prediction x is restricted to a given finite set of values 0  <x < . < xk 1 . In many

problems of weather forecasting, these values are 0, 1/10, 2/10, 3/10, .... 1 Let X denote

the set of allowable values, {x0 - x1  ". x ) 

We assume that the forecaster's predictions can be observed over a larp number of days,

and we let YUi) denote the frequency function or probability function of his predictions over

I MaZ: ITR,
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thes days. In order to ensure that the frequency function v(x) is of practical value, it is

necessary to assume that weather conditions remain stationary over the period of n days being

studied. More precisely, in our model we assume that, at the end of each day j , the

forecaster can observe the value of a vector M. of relevant meteorological variables, one
J

component of which is the indicator variable 80., which is 1 or 0 according to whether or not

it rained on day j . If we consider a potentially infinite sequence of consecutive days, rather

than just the finite number n , then we assume that the joint distribution of the sequence of

random vectors M,, M2 .... is stationary a priori in the usual sense of time series analysis or

stochastic processes. That is, many days in advance, a forecaster's joint distribution of any

sequence of k random vectors M., M .2 M is the same as that ofM M M
I1 2' 1+ I~ 9+i 2 1Ii

for all values of t and all values of k . We say "many days in advance," because a weather

forecaster clearly may have a different distribution for tomorrow's vector M, than for one

associated with a day a year from now, i.e. M The purpose of this somewhat loose
366

stationarity requirement is to assure the "comparability" of the events whose outcome is being

predicted and the existence of a long-run frequency or limiting probability function (x) .

The function (x) can be thought of either as the probability that the forecaster's prediction

on a randomly chosen day will be x or as the proportion of days on which his prediction is

x. Thus, v (x) satisfies the properties of probability: v(x) > 0 for xiX and . X V(x) = 1 .

In Section 2, we study the concepts of calibration and refinement for forecasters. The

concept of calibration pertains to the agreement between a forecaster's predictions and the

actual observed relative frequency of rain. Roughly speaking, a forecaster is said to be well-

.4 calibrated if among those days for which his prediction is x , the long-run relative frequency

of rain is also x . The concept of refinement pertains to how spread out or how sharp a

forecaster's predictions are. Roughly speaking, the more concentrated the probability function

v x) is near the values x = 0 and x = 1 , the more refined the forecaster is. These concepts

form the basis for comparing different forecasters.
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In -Section 3, ,we relaht the -concepts of calibration -and refinement to the concept of

sufficiency in the theory of the comparison of statistical experiments. Different :_,tions of

sufficiency in statistical inference are discussed in this context.

In Section 4, we review the use of the Brier or quadratic scoring rule for evaluating a

forecaster, showing that this scoring rule can be naturally partitioned into components

separately related to calibration and refinement. We then study the question of when an

observer can use a forecaster's predictions to obtain a better score than the forecaster himself,

and show that such an improvement can be achieved by the observer essentially if and only if

the forecaster is not well-calibrated.

Finally, in Section 5, we present results similar to those just described for other special

scoring rules and. more generally, for any arbitrary strictly proper scoring rule.

2. CALIBRATION AND REFINEMENT

For any particular weather forecaster, we let p(x) denote the relative frequency, or

conditional probability, of rain among all those days on which the forecaster's prediction was

L If the forecaster's probability x is to be directly interpretable in terms of the actual chances

of rain, then p(x) should be close to x . In accordance with this notion, a forecaster is said

to be well-calibrated if p(x) = x for every value of x such that v(x) > 0 [see, eg., Dawid

(1981b)]. In meteorology, the concept of calibration is called validity (Miller, 1962) or

reliability (Murphy, 1973), and a well-calibrated forecaster is called perfectly reliable.

Pratt (1962) and Dawid (1981b) have developed theorems which show that if a forecaster has

a joint probability distribution for all the random meteorological vectors M,, M2, ... that he

will observe over an infinite sequence of days, and if his prediction each day is the

appropriate conditional probability of rain given all the past observations, then according to his

joint probability distribution, there is probability 1 that he must be well-calibrated over the

infinite sequence of days. In effect, these results [see also Lad (1982)] show that simply being

coherent in the sense of de Finetti (1937) is tantamount to assigning subjective probability i to

.*" T.. " " U-,0' ." " * * -. ""



the pio t of being well-calibrated over the infinite sequence.

In practice, however, there are two reasons why a forecaster may not be well-calibrated.

First, his predictions can be observed for only a finite number of days. Second. and more

importantly, there is no inherent reason why his predictions should bear any relation

whatsoever to the actual occurrence of rain.

Although being well-calibrated is widely regarded as a desirable characteristic of a forecaster,

a forecaster can usually make himself well-calibrated by keeping track of the evolving values

of p(x) day after day and lying, i.e., specifying predictions that do not represent his honest

subjective probabilities, in order to adjust certain values of p(x) as necessary [DeGroot (1979)].

Furthermore, as Murphy and Winkler (1977) and Dawid (1981a) have pointed out, even if a

forecaster's honest subjective probabilities make him well-calibrated, his predictions are not

necessarily accurate in all respects and they are not necessarily of much use to anyone.

For example, suppose that it is known that the overall relative frequency of rain is p . In

meteorology, /a is sometimes called the climatological probability. Then a forecaster whose

prediction is / on each day will be calibrated in the long run, but his predictions are

obviously useless. At the other extreme, a forecaster whose prediction each day is either x = 0

or x = 1 , and who is always correct, is also well-calibrated and displays perfect foresight.

In order to compare various well-calibrated forecasters, we introduce a concept of

refinement among them. Consider two well-calibrated forecasters A and B , and suppose that

we know the functions v (x) and v (x) that characterize their predictions. Since both

forecasters are well-calibrated, p(x) = x for each of them. Then forecaster A is said to be at

least as refined as forecaster B if, from A's prediction on each day and an auxiliary

randomization based only on a table of random numbers, we can simulate a prediction with

the same stochastic properties as B's predictions. In other words. A is at least as refined as B

if we can artificially generate a well-calibrated forecaster with the same probability function

wv (x) as B simply by passing A's predictions through a noisy channel. The mathematical

Z
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definition is as foilowz

A stocltic transformation h(x I y) is a function defined for all xEX and yEX such that

h(xly) > 0 for xeX and yEX,

I h(xly) = 1 for yEX (2.1)
xEX

Forecaster A is at least as refined as forecaster B if there exists a stochastic transformation

h such that the following relations are satisfied:

I h(xly)v (y) = Y (x) for x"X , (2.2)
y.X

I h(x I Y)yv (Y) = xv,(x) for xeX . (2.3)
YEX

The function h determines the auxiliary randomization that is to be carried ouL If A makes

the prediction y on a particular day, then we generate a prediction x by means of an auxiliary

randomization in accordance with the conditional probability distribution h(xly) . The relation

(2.2) guarantees that in this way we will make each prediction x with the same frequency vB(x)

that B does, and the relation (2.3) guarantees that our predictions will again be well-calibrated.

In these terms, the forecaster who makes the same prediction p each day is least-refined

in the sense that any other well-calibrated forecaster is at least as refined as he is. It is

possible that ja is not one of the allowable predictios xo. x. ... , x. . In that case, there is a

value of i (i = O,1....k-1) such that xi < x x. 1, and we have shown in DeGroot and

Fienberg (1981) that a forecaster, who uses only the values x and x,. as his predictions in

such a way that he is well-calibrated, will now be least-refined. At the other extreme, the

forecaster whose prediction each day is either x = 0 or x = 1 and who is always correct is

most-refined in the sense that he is at least as refined as any other well-calibrated forecaster.

When two well-calibrated forecasters are being compared, it is quite possible that neither one

of them is at least as refined as the other. The two forecasters simply might not be
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comparable in terms of refinement, and it can be difficult to establish this fact. We might

very well find ourselves unable to construct a stochastic transformation h that satisfies (2.2)

and (2.3), but also unable to convince ourselves that such a transformation does not exist. Or

we might feel fairly certain that forecaster A is at least as refined as forecaster B , but again

find ourselves unable to construct a specific h that satisfies (2.2) and (2.3). The following

result, which was originally presented and proven in DeGroot and Fienberg (1981), is useful in

that it provides a simple necessary and sufficient condition that eliminates any need for being

able to construct an appropriate stochastic transformation.

Theorem 1. Consider two well-calibrated forecasters A and

B. Then A is at least as refined as B if and only if the

following inequalities are satisfied:

j-1
I (x.-xv)[vA(x)-v(x)] k 0 for j=l,..., k-1. (2.4)

i=0

As a simple example, if A and B are well-calibrated forecasters with the following

probability functions, then neither A nor B is at least as refined as the other:

*.1 for x=0 ,

v (x) .8 for x =.5 (2.5)
A

.1 for x = 1,

'.5 for x = .1,

vs(x) = (2.6)[ L.5 for x =.9.

In summary we note that, if one well-calibrated forecaster A is at least as refined as

another well-calibrated forecaster B , and if we must choose between learning the prediction of

A or learning the prediction of B , then we should choose to learn the prediction of A

regardless of the purposes for which we will use the prediction.

.
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3. CONCE'I OF SUFFICIENCY

In this section, we consider the comparison of forecasters who are not necessarily well-

calibrated. We begin by extending the concepts that we have just described for wll-calibrated

forecasters to the class of all forecasters.

Consider two arbitrary forecasters A and B , and suppose that we know the functions vA(x

and pA(x) that characterize the predictions of A and we know the functions V,(x) and p,(X)

that characterize B. Then forecaster A is said to be sufficient for forecaster B if, from A's

prediction on each day and an auxiliary randomization based only on a table of random

numbers, we can simulate a prediction with the same stochastic properties as B's predictions.

In other words, A is sufficient for B if we can artificially generate a forecaster with the same

functions v (x) and p,(x) as B simply by passing A's predictions through a noisy channel The

mathematical definition is as follows: Forecaster A is suffiient for forecaster B if there

exists a stochastic transformation h such that the following relations are satisfied:

I h(xIy)v^(y= v% (x) for X , (3.1)
yeX

I h(xIy)pA(y)VA(y)= po(x)v5 (x) for x#X. (3.2)
yEX

When the forecasters A and B are well-calibrated, this relationship of sufficiency reduces to

the relationship of refinement discussed in Section 2. It can be seen that (3.1) is the same as

(2.2) and, when A and B are well-calibrated, (3.2) is the same as (2.3).

Up to this point, we have characterized the predictions of a forecaster in terms of the two

functions v(x) and p(x) , but there is an alternative and equivalent characterization that

permits our discussion to be related more directly to standard statistical theory [see, e.g..

Lindley, Tversky, and Brown (1979) and Lindley (1981)]. Let 6 denote the indicator of rain.

so 8 = I if rain occurs on a particular day and 6 = 0 otherwise. For any given forecaster

let f(x 18) denote the conditional probability function of the forecaster's predictions given 8

Th t. f(x 1) r' resents the frequency function of the forecaster's predictions on days when

. -- ., . -'," " "" ' "." . " -",, - -'" -'" -. "-'.'-, - * . ..-.. - .'-' ."-. . -" '.. ." -. ". ""."" " " .
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rain actually occurs, and f(x I0) represents the frequency function on days when rain does not

occur. It follows that for, x eX,

f(x 11) = p(x)v(x)/p, (3.3)

f(x 10) = [l-p(x)] v(x)/(l-p) (3.4)

From (3.3) and (3.4), we see that knowledge of the functions v(x) and p(x) is equivalent to

knowledge of the functions f(xI) and f(xI0) . Hence, the two functions f(xI) and f(xI0)

*; characterize the forecaster's predictive behavior. In terms of this characterization, we can now

apply the original definition of sufficiency in the theory of the comparison of statistical

experiments as given by Blackwell (1951, 1953) [see also Blackwell and Girshick (1954), Chapter

12, or DeGroot (1970). Sec. 14.17]. To apply this theory, we simply regard learning the

prediction of a forecaster as observing the outcome of a particular statistical experiment. Then

forecaster A is sufficient for forecaster B if there exists a stochastic transformation h such that

the following relation is satisfied:

I h(xIy)fA(yI 9) = f(xI6) for xcX and & =0,1. (3.5)'yi
The following theorem shows that this definition of sufficiency is equivalent to the definition

given at the beginning of this section. The proof is direct and is given in DeGroot and

Fienberg (1981).

Theorem 2. A stochastic transformation h satifies (3.5)

if and only if it satisfies (3.1) and (3.2).

As before, not all forecasters are comparable in terms of the relationship of sufficiency; it

induces only a partial ordering among all forecasters. It is not necessarily true, however, that

if forecaster A is sufficient for forecaster B then A is at least as good a forecaster as B

For example, suppose that A never makes a prediction other than x = 0 or x = 1 , but that

he is always wrong about whether or not it is going to rain. Then A is sufficient for every

other forecaster, even though he is the worst possible forecaster. If we know that A is always

'.. , ,.. 7-,":.."-." " . " " - """" ." " - . . ."" """ . . . . . .."" -""- . a- " ". " - ".". .. ---- ." - " .. -'
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wrong, his predictions are just as useful to us as those of a forecaster who is always correct.

If forecaster A is sufficient for forecaster B , and if we must choose between learning the

prediction of A or learning the prediction of B , then we should choose to learn the

prediction of A regardless of the purposes for which we will use the prediction. It is

important to emphasize that this concept of sufficiency is based on our having to choose

between learning the prediction of A or the prediction of B . Even though A is sufficient for

B in this sense, it is quite possible that by learning the prediction of B in addition to the

prediction of A , we might gain more information than we gain from the prediction of A

alone.

As we have seen from (3.5), in order to determine whether A is sufficient for B, we need
only know the marginal probability functions f A(x ) and fB(x 10) of A and B separately.

However, in order to determine whether forecaster A is sufficient for both himself and

forecaster B together, we must know the joint probability function of the predictions of A and

B on any given day. By analogy with the notation already developed, let f(x,y 11) denote the

relative frequency of days on which the prediction of A is x and the prediction of B is y

among all days on which 6 = 1 . Similarly, let f(x,yI0) denote this relative frequency among

all days on which 0 = 0 .

Let h(y I x,1) and h(y I x,0) denote the conditional probability functions of y given x , derived

from the joint probability function f(x,y 11) and f(x,y 10) respectively. In accordance with the

classical theory of sufficient statistics, we say that forecaster A is sufficient for the pair of

forecasters A and B , or simply that A is sufficient for (A, B) , if the following relation is

satisfied:

h(ylx,1) = h(ylx.0) for xeX and ytX . (3.6)

If (3.6) is satisfied, then the common conditional probability function h can be used as the

stochastic transformation in (3.5) and will satisfy that relation. Thus, if A is sufficient for

(A, B) , then A is sufficient for B . The converse, however, is not necessarily true. In

.: .- -% . , ." -.-.-.. _ . . - . . .. . . .. .-. • . . . . . . . . ... .- .
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particular, since the relation (3.5) involves only the functions f A(x I0) and f (x 6) it is possible

for A to be sufficient for B and for the joint probability function f(x.y 18) to be given by

the product of the marginal probability functions. We begin with any pair of forecasters A

and B such that A is suffwilent for B. Then we simply multiply the functions fA(x ) and

f3(x 10) together to yield

f(x,y 16) = fA(X I)fB (y 10) (3.7)

In this case, the predictions of A and B are conditionally independent given 6 Thus,

learning the prediction of B will typically add new information about 0 beyond that contained

in the prediction of A , and it follows that A will not be sufficient for (A, B)

We conclude this section with another characterization of problems in which forecaster A is

sufficient for the pair (A, B) , this time in terms of the notation of Section 2 . Let '(x,y)

denote the joint probability function of the predictions x and y , i.e., v(x,y) is the relative

frequency of days on which the prediction of A is x and the prediction of B is y

Furthermore, let p(xy) denote the conditional probability of rain among those days on which

the predictions are x and y . Then

p(x,y) v (xy)
h(y I x,1) = (3.8)

PAWV A(XW

S[1-p(x,y) v(x,y)
h(y I x,0) = (3.9)Ii [ -PA,(X) I v A(xW

It follows from (3.8) and (3.9) that expression (3.6) will be satisfied if and only if p(xy) =

pAlx)for all xtX and yf X . Thus, we have established the following result:

Theorem 3. Forecaster A is sufficient for the pair of

forecasters (A, B) if and only if

p(x,y) = PA(x) for x-X and yeX (3.10)

.' A

. . . . ..
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.4. THE BRIER OR QUADRATIC SCORING RULE

It has often been suggested in the statistical literature that a forecaster's predictions over a

* sequence of days can be evaluated by the use of a scoring rule which assigns a numerical

value, or score, each day based on the forecaster's prediction x and the observation of whether

or not rain occurred, i.e., the observation of e . One of the earliest scoring rules proposed

for meteorological forecasts is the quadratic scoring rule (x-8)2 , introduced by Brier (1950).

With this rule, the forecaster's score on any given day reduces to the square of the probability

that he assigned to the event, either rain or no rain, that did not occur.

The forecaster's overall Brier Score (BS) is the average of the values of x-0)2 over all of

the days on which predictions are made. When forecasters are evaluated by this scoring rule,

the forecaster with the smallest BS receives the highest evaluation. Among those days on

which a forecaster's prediction is x , his score will be (x-) 2 with relative frequency p(x) and

it will be x2 with relative frequency 1-p(x) Since the relative frequency with which he

makes the prediction x is v (x) , we find that

BS = E v(x) tp(x)(x-1)2 + [1-p(x)lx2) . (4.1)

xfX

After some algebra, this can be expressed in the form

BS = I v(x)[x-p(x)] 2 +  v v(x)p(x)[1-p(x)] . (4.2)
XIX x"X

The first summation on the right-hand side of (4.2) is a measure of the calibration of the

forecaster. The closer p(x) is to x , the smaller this component will be. If the forecaster is

well-calibrated, this component is zero. The second summation on the right-hand side of (4.2)

is a measure of the refinement or sufficiency of the forecaster. The more concentrated the

values of p(x) are near 0 and 1, the smaller this component will be. We show in DeGroot

and Fienberg (1981) that, if forecaster A is sufficient for forecaster B , then this second

component will be at least as large for B as it is for A . Tukey, Mosteller, and Fienberg

(1%5) have suggested a variant of BS in which the two summations on the right-hand side of

. -,. ... , .. . --. ., . . + , -. . , .. -, --: . - .., ...-, -• ..: -. - . , . .,- -, . -. ,, . .: .. .-. . .. ., ... . -.. .. ..
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(4.2) are given different weights. Murphy (1972) has given a related partition of BS.

Suppose now that we know the functions v(x) and p(x) that characterize a particular

forecaster's predictions. Is it possible for us to use his predictions, and no other relevant

meteorological information, to make our own predictions and to attain a smaller value of BS

than the forecaster himself?

The forecaster's BS is given by expression (4.1). In order for us to make our predictions.

we must choose a stochastic transformation h(x I y) to be used in the following manner. If the

forecaster's prediction on a given day is y , then we choose our prediction at random from X

in accordance with the conditional distribution h(x I y) . With this procedure, our predictions

*" are characterized by the functions

-o(x) = h(xIY)v(y) (4.3)
yeX

po(x) = X h(xly)p(y)v(y)/Vo(x) . (4.4)
YOX

It follows from expressions (4.1), (4.3). and (4.4), after some algebra, that our Brier Score

ESO is given by

3 = v(y) I (p(y)(x-1)2 + [1-p(y)]x:} h(xly). (4.5)

yeX XEX

For each fixed value of y , the summation over x in expression (4.4) yields a weighted average

of the values

p(y)(x-1)2 + [1-p(y)] x"  (4.6)

with weights given by the conditional probabilities h(x I y) . Hence, in order to minimize BSo,

we should choose the conditional distribution h(x I y) to put all the probability on the value of

x that minimizes expression (4.6). If p(x) lies in the allowable set of predictions x then all is

well and the value that minimizes expression 44.6) is x = p(y) . i.e. we make the forecaster

well-calibrated. If p(x) does not lie in the allowable set x then we come as close to the

2-.. . . . .. ,. .
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ainimum of ugpresion (4.6) as poible by setting x equal to the permnisible value clat t0

ply) i.e., we make the forecaster almost well-calibrated.

Thus, when the forecaster's prediction as y . we should make the prediction p(y) (ignoring

the minor detail that p(y) might not lie in the allowable set of predictions X). If the

forecaster is well-calibrated then we will simply repeat his prediction and attain the same Brier

Score that he does. If he is not weli-calibrated, however, then by making the prediction py)

when his prediction is y we can attain a smaller Brier Score than he does. Even if p(y) is

not in X for some predictions yeYVCX .we can still attain a malerf Brier Score than he does

by choosing the value in X closest to p(y) whenever yeY , and choosing p(y) otherwise, unless

the forecaster's value y is already as close as possible to p(y) for all y #V . In summary, we

can improve upon the forecaster's BS if and only if he is not well-calibrated, and has not

tried to make himself so.

Now suppose that we know the functions v(x.y) and p(xy) that characterize jointly the

predictions x and y of two forecasters A and B. How can we use the two predictions x and

y , and no other meteorological information, to minimize our Brier Score? By an argument

analogous to the one just presented, we can show that our prediction on any given day should

be p(xy) . In this way we can attain a Brier Score that will be no largr than the score of

either of the other forecasters and will typically be smaller than both. If forecaster A is

sufficient for the pair (A, B) , then by Theorem 3. our prediction will simply by pA(x) and it

is not helpful to us to learn the prediction of forecaster B . Again, if p(x.y) is not in X, we

need to use the value in X closest to it.

5. STRICTLY PROPER SCORING RULES

The Brier or quadratic scoring rule introduced in Section 4 has the property that the

forecaster will minimize his subjective expected score on any particular day by stating as his

prediction x the value that is his actual subjective probability p of rain for that day. In

symbols, his expected score when he makes the prediction x is
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p(x-1) 2 + (1-p)x2 
, (5.1)

and this is minimized uniquely at the point x = p. In this section we consider other scoring

rules that have this property.

To bring our discussion in this section into agreement with much of the statistical literature.

we shall consider scoring rules with the property that the forecaster desires to maximize his

score rather than minimize it. Obviously, any scoring rule that is to be maximized is the

negative of one to be minimized, so the development can be given equally effectively in either

setting. In particular, the negative of the Brier Score is one that should be maximized.

An arbitrary scoring rule has the following form: Suppose that the forecaster's prediction is

x . Then. if rain occurs the forecaster receives a score gW(x) and if rain does not occur he

receives a score g2(x) . Since we assume that the forecaster desires to maximize his score, it is

reasonable to assume that gW(x) is an increasing function of x and that g2(x) is a decreasing

function of x.

If the forecaster's actual subjective probability of rain on a particular day is p and he makes

the prediction x . then his expected score is

p g(x) + (1-p) g, (x) (5.2)

A proper scoring rule is one for which expression (5.2) is maximized when x = p . A

strictly proper scoring rule is one for which x = p is the only value of x that maximizes

expression (5.2). An interesting discussion of these rules, with historical references, is given by

Stiel von Holstein (1970), Sec. 3.2.

The negative of the Brier Score is a strictly proper scoring rule with g1(x) = -(x-1) 2 and

#2(x) = -x . Another interesting strictly proper scoring rule is the logarithmic rule [Good

(1952)] in which I W(x = log x and 2(x) log (1-x) . Both the Drier and the logarithmic

rules have the symmetry property that g, (x) 82(1-x) '

Various ways of characterizing strictly proper scoring rules have been presented in the

. .... . i m mb.R l i............................................,.....................................
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.iitrature. If a(t) Iisa-putive eontinum function on the-interval 0: t S 1 for which the

interal to be given in (5.3) exis, then the scoring rule defined as follows is said to be

strictly proper [see Shuford. Albert, and Massengill (1966). or S&el von Holstein (1970)1:

1 (x) = a(t)dt , -(x) = 3 l(t)dt (5.3)

If Jx) is a strictly convex, differentiable function on the interval 0 l x 1,then the

following scoring rule is also strictly proper [see Savage (1971)]:

dJlx) dJlx)
61(x) = J(x) + (1-x) d , g2(x) = J(x) -x dx (5.4)

Both expressions (5.3) and (5.4) characterize the class of strictly proper scoring rules under

mild regularity conditions on g1 and g2"
I 2

The theory underlying the use of strictly proper scoring rules is that they encourage the

forecaster to give his actual subjective probability of rain as his prediction, because by so

doing he maximizes his expected score. The shortcoming of this theory is that in general there

is no reason to believe that the forecaster is trying to maximize the expected value of his

score rather than the expected value of some other function of his score. In other words.

there is no reason to believe that the forecaster's utility function is simply a linear function of

his score rather than some increasing but nonlinear function.

This shortcoming becomes more pronounced when we consider the forecaster's overall score

as the average of his scores over the days on which predictions are made. The forecaster's

objective may be to maximize the probability that his overall score will be higher than that of

a rival forecaster. If the forecaster is actually being paid on the basis of his score, he may

place special importance on trying to ensure that his payments do not fall below some fixed

level. Consideratios like these may well lead the forecaster on occasion to make a prediction

that does not represent his actual subjective probability of rain. On the other hand, if the

S. . . . .. . .-4.,, - -, - - . ... , , . .. . . . . . . - . - . . ,.. ., . . . . . -. . . . . - - . -. - ;
' , i :% "',*,,-' - ' '. . , , . .. "" . . '. - .. ... .---. -. : .. '_,_-'' " -- - -4..* .'
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forecuer's utility function for payments were known, then a schedule of payments could

presumably be worked out that would encourae him to want to maximize his expected overall

scor. Comments along these same lines are given by Siel von Holstein (1970).

We conclude this section by noting that every strictly proper scoring rule can be partitioned

in a manner analogous to that given in expression (4.2) for the Brier Score.

Theorem 4. If a forecaster's predictions are characterized

by the functions v(x) and p(x) , and if a proper

scoring rule is specified by the functions g,(x) and

g2(x) , then the forecaster's overall score S can be

expressed in the form S = S + S2 , where

S= I V(x) {p(x)(g,(x) - g1 p(x))
XEX
+ [1 - p(x)]( 2(x)- g2lp(x)])) (5.5)

S2  v (x) f Ep(x)] , (5.6)
ICX

and
f(t) - t g(t)+ (1-t) 2 (t) for 0 5 t 51. (5.7)

If the scoring rule is strictly proper then 15(t) is strictly

convex and S, attains its maximum value only when p(x) = x

for every value of x such that v(x) > 0 .

According to Theorem 4. whose proof will be given elsewhere, if the scoring rule is strictly

proper, then we can regard S, as a measure of the forecaster's calibration. it is zero only for

a well-calibrated forecaster and it is negative otherwise. Furthermore. we can regrd S2 as a

measure of the refinement or sufficiency of the forecaster. Since 0 is a convex function of

p(x) , we can show that, if two forecasters A and B are both well-calibrated and A is at least

as refined as B ,then the value of S2 will be at least as large for A as it is for B (see
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In general, since t)is a strictly convex function on the interval 0 : t 91 , it attains its

maximum value at one endpoint or the other. Hence, the more concentrated the values of

p(x) are near this endpoint, the larger the value of S2 Will be. If gl(x) - 8(1-x) . then 0 (t)
will be symmetric with respect to t = % . In this casm the more concenitrated the values of

p(x) are near 0 and 1, the larger the value of S2 will be. As mentioned earlier, both the

quadratic and the logarithmic scoring ruies have this symmetry.

6. DATA ARRAYS FOR COMPAR19ON

The results described in this paper suggest how we should actually wmmnarsze data for the

evaluation and comparison of forecasters, no matter which scoring rule we ultimately wish to

use for convenience, we restrict attention here to two forecasters. A and B ,but our remarks

geerlize with little trouble.

All of the information needed to evaluate and compare a pair of forecasters mnaking

predictions over theaeet of ndayscan beummarized in the form of a(k+1) X(k1)

* ~X 2 table of counts. Dimensions 1 and 2 of this table correspond to the k+I possible values

of the predictions of forecasters Aand B, respectively. Dimenson 3corresponds to the two

outcomes, rain (8=1) and no rain (69=0) .Thus the frequency f gives the proportion of the n

days on which Apredicts I ,Bpredicts I and the ouome is 8. Note that wedo not

make any use of the other meterological variables discussed in Section 1.

To check on the calibration of forecasters A and B we need only compare the relative

frequencies of rain from each of the two-way marginals, i.e. (f 1/f ,, and 1% ,/f~j,

corresponding to1 () and I p,(x.)) , with the values of the predictions, . ,

I To determine if forecaster A is at least as refined as forecaster B we apply Theorem 1

of Section 2, which requires only the one-way marginals lf i+. and (f.1,, corresponding to

(9) and (v ,(xl))

~ ~ ' ~~*.*.-*.~*.*. -. .- * * . ::Lai



19

In Section 3. we noted the relationship of calibration and refinement to the concept of

sufficiency in the statistical theory of experiments. To demonstrate that forecaster A is

sufficient for forecaster B we again need only compare the relative frequencies of predictions

given rain and given no rain, i.e. {ff. 8/f, 0 ) and ffj0/f o) , to see if a stochastic

transformation h satisfying expression (3.5) exists. As we noted in Section 2, searching for

such an h even in the case that both forecasters are well-calibrated may prove both frustrating

and fruitless.

What we would like is a way to extract the stochastic transformation h from the data array

(fjs} itself. We can do this in the special case where A is sufficient for (A. B) . for then

B's predictions are conditionally independent of the outcomes given A's predictions (see

Theorem 3). We can check for conditional independence directly in (f,,91 . From expression

(3.6) and the ensuing discussion, we see that when A is jointly sufficient for (A. B) the

transformation h is given by the common conditional frequencies {f. /f., .

The fact that the relationships of interest for the comparison and evaluation of a pair of

forecasters all seem to depend only on two-way marginal totals suggests a possible link with

loglinear models and in particular the model of no second-order interaction (e.g. see Bishop.

Fienberg, and Holland (1975) and Fienberg (1980)). Except for the direct interpretation of

joint sufficiency in terms of conditional independence we have yet to discover such a link.

Finally, we note that for predictions on a finite number of days. calibration and other

relationships discussed here hold only approximately due to sampling variability - a matter we

have not addressed in this paper.

L " ' ,, .. ,, ,. .e - '• ' -"."P "' ''-- 'w'. =''"' -*, "., ' ".' . ....."......"-.-....-........................-..-........,......"....".."".-."..."....".-.-"...
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ABSTRACT (continued)

the comparison of statistical experiments. We also consider the question of
* interrelationships among forecasters and discuss methods by which an observer

should combine the predictions from two or more different forecasters. Then we
turn our attention to the concept of a proper scoring rule for evaluating
forecasters, relating it to the concepts of calibration and refinement. Finally,
we discuss conditions under which one forecaster can exploit the predictions of

-. another forecaster to obtain a better score.
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